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Foam in porous media exhibits an unusually high apparent viscosity, making it useful 
in many industrial processes. The rheology of foam, however, is complex and not well 
understood. Previous pore-level models of foam are based primarily on studies of 
bubble flow in circular capillaries. A circular capillary, however, lacks the corners that 
characterize the geometry of the pores. We study the pressure-velocity relation of 
bubble flow in polygonal capillaries. A long bubble in a polygonal capillary acts as a 
leaky piston. The ‘piston’ is reluctant to move because of a large drag exerted by the 
capillary sidewalls. The liquid in the capillary therefore bypasses the bubble through 
the leaky corners at a speed an order higher than that of the bubble. Consequently, the 
pressure work is dissipated predominantly by the motion of the fluid and not by the 
motion of the bubble. This is opposite to the conclusion based on bubble flow in 
circular capillaries. The discovery of this new flow regime reconciles two groups of 
contradictory foam-flow experiments. 

Part 1 of this work studies the fluid films deposited on capillary walls in the limit 
Ca-tO (Ca = ,uU/g, where ,u is the fluid viscosity, U the bubble velocity, and the 
surface tension). Part 2 (Wong et al. 1995) uses the film profile at the back end to 
calculate the drag of the bubble. Since the bubble length is arbitrary, the film profile 
is determined here as a general function of the dimensionless downstream distance x .  
For 1 < x < Ca-l, the film profile is frozen with a thickness of order Ca213 at the centre 
and order Ca at the sides. For x N Cap’, surface tension rearranges the film at the 
centre into a parabolic shape while the film at the sides thins to order Ca413. For 
x 9 Ca-’, the film is still parabolic, but the height decreases as film fluid leaks through 
the side constrictions. For x N Ca-’I3, the height of the parabola is order Ca2/’. 
Finally, for x 9 Ca-’’’, the height decreases as Ca1/4x-114. 

1. Introduction 
Foam in porous media consists of gas bubbles dispersed in a surfactant solution. 

Most bubbles are larger than the typical pore dimensions (Chambers & Radke 1990). 
Interaction between long bubbles and pore walls gives foam a yield stress and a shear- 
thinning behaviour (Assar & Burley 1986). The interaction also gives foam an apparent 
viscosity that can be 100 times that of the liquid constituent (Falls, Musters & 
Ratulowski 1989). The resulting low mobility makes foam appealing as a displacing 
agent in oil recovery (Holm & Garrison 1988; Hirasaki 1989) and as a sealant in 
underground natural gas reservoirs (Albrecht & Marsden 1970). 

t Present address: The Levich Institute, The City College of CUNY, New York, NY 10031, USA. 
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Understanding of the complex rheology of foam must start from the pore level. The 
simplest model of the irregular pores in porous media is a straight tube of circular 
section. Bubble flow in circular tubes was first studied in the limit Ca + 0 by Bretherton 
(1961). He found that the pressure drop needed to move a long bubble scales as Ca213. 
This is an order larger than the pressure drop (- Ca) needed to drive a unit column 
of fluid, and seems to explain the high apparent viscosity and shear-shinning behaviour 
of foam. Consequently, the 5 scaling has been incorporated widely into pore-level 
models of foam (Kovscek & Radke 1994). 

Recently, several foam-flow experiments at low flow rates revealed that the pressure 
drop over a porous core varies linearly with liquid flow, but is insensitive to gas flow 
(Kovscek & Radke 1994; and references therein). None of the existing theories based 
on circular-tube results can predict this behaviour. 

This work studies the pressure-velocity relation of bubble flow in polygonal 
capillaries. A long bubble in a polygonal capillary acts as a leaky piston. The leaky 
corners have the same order of cross-sectional area as the capillary. Thus, the liquid in 
the capillary can bypass the bubble through corner channels (corner flow). In addition, 
the liquid also flows by pushing the bubble (plug flow). The ratio of corner to plug flow 
depends on the liquid flow rate. At moderately low flow rates, the plug flow dominates, 
and it obeys the T scaling as in circular capillaries. However, at extremely low liquid 
flow rates, the corner flow dominates and yields a linear relation of liquid pressure 
gradient versus liquid flow. In this linear regime, the bubble motion dissipates 
insignificant amount of mechanical energy, and therefore has no effect on the pressure 
gradient. The linear relation and its insensitivity to bubble motion provide an 
explanation for the peculiar foam-flow behaviour at low flow rates. 

In plug flow, the liquid pushes the bubble. A moving long bubble in a polygonal 
capillary deposits liquid films on the capillary walls. The thickness of the films is an 
order smaller than the width of the capillary. Hence, the pressure work driving the plug 
flow is dissipated predominantly in the films. The main purpose of Part 1 is to 
determine the film profile so that the dissipation can be calculated. 

Flow of clean bubbles in circular capillaries has been thoroughly explored (see, for 
example, Schwartz, Princen & Kiss 1986). Therefore, it is a useful prototype for 
studying film profiles in polygonal capillaries. In the limit Ca + 0, a long bubble in a 
circular capillary can be divided into outer cap regions where surface tension 
dominates and inner film regions where viscous and surface tension forces are equally 
important (Bretherton 1961). The deposited fluid film is of order Ca213 in thickness. 
Dissipation of mechanical energy is strongest in the inner regions at the front and back 
of the film. These regions determine the pressure drop needed to move the bubble 
because the total dissipation equals the rate of pressure work. Between the ends, the 
film is uniform. Owing to the lack of film rearrangement, the length of a clean bubble 
plays no part in the solution. This is not true for bubbles in polygonal capillaries. 

The same basic inner and outer structure exists for long bubbles in polygonal 
capillaries in the limit Ca+0, as sketched in figure 1. The mathematical model to be 
solved is stated in 92. Section 3 describes the outer solution. This is a static meniscus 
intersecting the walls in apparent contact lines, as illustrated in figure 1. The inner 
solution gives a high-resolution view of the apparent contact line, and of the thin film 
deposited by it. Throughout the inner region, the meniscus is nearly parallel to the wall 
and the lubrication approximation holds. Section 4 uses this approximation to derive 
the (partial-differential) equation governing the film thickness throughout the inner 
region. Simplification of this equation is possible in six subregions of the inner region. 
Thus, 5 5 describes the flow within the apparent contact line. This region is essential to 



Motion of long bubbles in polygonal capillaries. Part I 73 

FIGURE 1. Front half of a long bubble (light shading) flowing through a wetting liquid (dark shading) 
in a square capillary. A coordinate system is fixed at the nose of the bubble. The diagram also shows 
apparent contact lines and thin films. The thickness of the fluid films is exaggerated for illustrative 
purposes. 

understanding how the liquid moves the bubble. As in the axisymmetric flow studied 
by Bretherton (1961), in the limit Ca --f 0, dissipation of mechanical energy due to the 
motion of the bubble is essentially confined to the apparent contact region. However, 
the structure of this region now differs in one essential form from that in the 
axisymmetric flow. We show that the film thickness at the front contact region changes 
from O(CLI’’~> at the leading edge (Q in figure 1) to O(Ca) along the section (R in figure 
1) parallel to the direction of bubble motion. This variation in thickness means that 
surface tension rearranges the film in the downstream direction. Therefore, the 
structure of the trailing contact region depends on the bubble length, and so does the 
pressure drop needed to move the bubble at a given velocity. As noted at the end of 
the previous paragraph, this is an essential difference between the present flow and the 
axisymmetric flow. Sections 6 and 7 describe the evolution of the film. Specifically, the 
film thickness seen by the trailing bubble cap is given by (6.10) or (7.7) depending on 
bubble length. Section 8 shows how this initial profile influences the trailing contact 
region. Part 2 of this paper uses these results to find the relation between liquid flow 
rate and bubble velocity. 

Film profiles derived in this paper also apply to bubbles in Hele-Shaw cells: 
rectangular capillaries with high aspect ratio. When a non-wetting fluid is injected into 
a Hele-Shaw cell initially filled with a wetting, more viscous liquid, the fluid advances 
in the shape of a finger and deposits a liquid film on the wall (Saffman & Taylor 1958). 
The deposition process has been analysed theoretically by Park & Homsy (1984) and 
Reinelt (1987). However, they did not solve the subsequent film rearrangement. 
Recently, Burgess & Foster (1990) studied theoretically the motion of a flat circular gas 
bubble through a Hele-Shaw cell. They analyse the termination of the film. However, 
a circular flat bubble is not long enough for the film to rearrange. Here, we study long 
bubbles where it is necessary to consider rearrangement. Results for polygonal 
capillaries also apply to Hele-Shaw cells because the inner limit of the outer solution 
is the same in both problems. 

Although only clean bubbles are considered here, our solutions apply directly to 
surfactant-laden bubbles when the bubble surface is remobilized by the surfactant. 
Stebe, Lin & Maldarelli (1991) have shown both theoretically and experimentally that 
a surfactant-laden interface may mobilize when the bulk surfactant concentration is 
high enough to eliminate a diffusion boundary-layer resistance, and when the rate of 
surfactant adsorption and desorption is fast compared to the rate of convection of 
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adsorbed surfactants along the surface. Under these conditions, the surfactant 
concentration is constant along the interface. The motion of a surfactant-laden bubble 
is then the same as that of a clean bubble, except that the surface tension is lower by 
a constant value everywhere on the interface. 

2. Governing equations 
Figure 1 illustrates the physical situation. The gas bubble moves with constant 

velocity U through a straight square capillary initially filled with a wetting Newtonian 
liquid of viscosity p. The gas is taken as effectively inviscid and incompressible. The 
gas/liquid interface has a constant surface tension a. The radius, a, of the largest 
inscribed sphere of the capillary is small, so that inertia and gravity effects can be 
neglected. The coordinates are fixed at the nose of the bubble with x pointing 
downstream, as shown in figure 1 .  Lengths, velocity, pressure, and force are made 
dimensionless using a, U,  a / a ,  and aa, respectively. 

The dimensionless momentum and continuity equations are 

V p  = CaV'ii, V - i i  = 0, (2.1 a, b) 

where V = i a / a x + j  d/ay+k a/az, p is the fluid pressure (the bubble pressure is set to 
zero), Ca = p U / a  is the capillary number, and ii = ui+uj+ wk is the fluid velocity. 

On the wall, no-slip requires that 
ii = i. (2.1 c) 

Motion is assumed to be steady in the moving coordinates. The surface of the bubble 
is therefore a stream surface, so that at the gas/liquid interface 

n - i i =  0. (2.1 d )  

At the interface, the boundary condition on the stress is 

( - p / + 2 ~ a ~ ) . n  = n V - n .  (2.1 e) 

Here, / is the unit tensor, E is the strain rate tensor, n is the unit vector normal to the 
gas/liquid interface pointing from the gas towards the liquid, and V - n  is the mean 
curvature of the interface (Weatherburn 1938, p. 131). 

As mentioned in 5 1 , in the limit Ca + 0 the bubble in figure 1 can be divided into two 
regions: an outer region away from the wall where surface tension dominates and an 
inner region near the wall where surface tension and viscous forces are comparable. 
The viscous film thins continuously as Ca + 0, but the limiting case of Ca = 0 is never 
reached because the topology of a moving bubble differs from that of the static bubble. 
Hence, the perturbation from the static state is singular, and a singular-perturbation 
method is used to determine the first-order effect of viscous forces. 

3. Outer solution 
The outer problem is obtained by applying the limit Ca+ 0 to the governing 

equations. In this limit, the momentum equation (2.1 a) requires V p  = 0. The liquid 
pressure is therefore uniform or p = -a (constant). The stress boundary condition 
(2.1 e) then becomes - 

V . n  = a. (3.1 a) 

Equation (3.1a) governs the shape of the static bubble. The constant a is the mean 
curvature of the bubble surface and is determined by an integral force balance 
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FIGURE 2. Half of a static long bubble in a square capillary. The meniscus far away from the nose 
reduces to circular arcs with radius l l a .  

Capillary a b C XO 
shapes 

N = 3  1.7776 0.75765 1.990 0.8549 
N = 4  1.8862 0.46984 3.274 0.873 7 
N = 6  1.9523 0.281 62 5.532 0.905 9 
B =  1.2 1.7300 

shorter side 0.421 95 3.094 1.050 
longer side 0.621 95 2.878 0.8776 

shorter side 0.36544 2.888 1.322 
longer side 0.86544 2.413 0.8868 

shorter side 0.298 10 2.637 1.786 
longer side 1.298 10 1.860 0.9044 

B =  1.5 1.5759 

B = 2  1.424 7 

a is the mean curvature calculated analytically from (A 3) and (A 6). 
b is determined analytically from (A 2), (A 4) and (A 5). 
A,  is the scaled film area defined in (5.7). 

TABLE 1. Fitting parameters c and x, of contact lines 

A,  

0.1935 
0.1136 
0.06602 

0.1066 
0.1702 

0.09526 
0.2690 

0.078 14 
0.459 7 

(Appendix A). Table 1 lists the results for three regular-polygonal capillaries of N sides 
and three rectangular capillaries with aspect ratios B. The static bubble intercepts the 
wall at an apparent contact line because the trailing film is thin. The effective contact 
angle is zero because the slope of the meniscus in the trailing film vanishes in the limit 
Ca -+ 0. 

The boundary condition for (3.1 a) is therefore the matching condition 

m - n  = 1, (3.1 b) 

where m is a unit vector normal to the capillary wall. 
Equation (3.1) defines a free-boundary problem because the contact line is not 

known in advance. The problem has been solved numerically for several polygonal 
capillaries by Wong, Morris & Radke (1992b). Two properties of the solutions are 
needed here for matching. First, in all the capillaries considered here, points (x, z) on 
the contact line satisfy the equation 

cos (7cz/2b) = exp ( - c(x- x,)), (3.2) 
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FIGURE 3. Definition sketch of the Cartesian coordinates (n , s )  for the front and back ends. The 
origin P is a point on the contact line. Points (x, z )  on the contact line obey (3.2). 

where 2b is the separation between the two branches of the contact line at large x, as 
portrayed in figure 2. Table 1 lists the values of b determined from the meniscus 
geometry (Appendix A). The constants xo and c depend on the capillary; the values 
given in table 1 were obtained by fitting (3.2) to our numerical results (Wong 1992, 
p. 71). As written, (3.2) holds only for the front half of the contact line. (It holds for 
the back half when the obvious change in origin is made.) This explicit form for the 
contact line is used in calculating the deposition of the fluid film in $5. 

Secondly, for matching, we also need the curvature of the static meniscus along the 
section normal to the contact line. Let h be the height of the meniscus above the wall. 
Let P be a point on the contact line, and introduce orthogonal Cartesian coordinates 
(n ,  s) with origin at P, and n normal to the contact line, as shown in figure 3. Because 
ah/& = 0 = ah/as at P, (3.1) requires a2h/an2 + a2h/as2 = a at P, i.e. a is the sum of the 
curvatures in the n and s directions. However, a2h/as2 vanishes at  P, and is non-zero 
away from P only if the contact line is curved. The interfacial curvature normal to the 
contact line therefore equals the mean curvature of the static meniscus at any point P 
on the contact line, i.e. 

This matching condition is applied to the flow in the viscous contact regions in $ 5  and 
$8. It is derived more rigorously by Wong (1992, p. 107), using the arc length along the 
contact line and the distance normal to the contact line as curvilinear coordinates. 

4. Governing equation for the inner region 
A moving long bubble in a capillary tube deposits a fluid film on the wall (figure 1). 

Within this thin film, the shear stresses are large enough to make the viscous term 
important in the momentum balance (2.1a). Because the film proves to be nearly 
parallel to the wall, the lubrication approximation holds and is used in this section to 
derive the governing equation for the inner region. 

Under the lubrication approximation, the momentum equation (2.1 a)  becomes 

(4.1 a, b) 

where V = ia/ax+ka/az and u = ui+wk.  (The film at y = 1 in figure 1 is used to 
demonstrate the derivation.) On the wall, the no-slip boundary condition requires that 

u = i  at y = l .  (4.2) 
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The stress jump conditions at the interface simplify to 

where h is the height of the film to be determined. 
Integration of the continuity equation (2.1 b) across the film shows that 

v . 4  = 0, 

where 

77 

(4.3 a, b) 

(4.4a) 

(4.4 b) 

is the volume flow across a plane area normal to u, with unit width and with height 
equal to the film thickness. The velocity u is found from (4.1) to (4.3) as 

1 
Ca 

u = i + - [ h ( l - y ) - ~ ( 1 - y ) 2 ] V V 2 h .  

Substitution into (4.4 b) gives 
1 

4 = hi+-h3VV2h. 
3 Ca 

(4.5) 

This equation shows the two contributions to the volume flux. The first is due to the 
motion of the wall, which sweeps fluid from the front of the bubble to the back. The 
second is due to the gradient in the capillary pressure, p = -V2h, which sucks fluid 
from the film. At the front of the bubble, a balance between the two volume fluxes 
yields the thickness of the film. At the middle section of the bubble, the cross-stream 
pressure gradient, being unopposed, sucks fluid away from the film to form a severe 
constriction at the film boundary. At the back of the bubble, the pressure gradient 
tends to generate another severe constriction. However, the film carried by the wall 
supplies sufficient fluid to the constriction to prevent it from closing. The balance yields 
an oscillatory film profile. 

The field equation for h is obtained from ( 4 . 4 ~ )  as 

(4.7) 
ah 1 
ax 3Ca 
-+-V.(h3VV2h) = 0. 

Equation (4.7) holds throughout the thin film because the lubrication analysis 
leading to it assumes only that the meniscus is nearly parallel to the wall. (The analysis 
of (4.7) given in 95 shows the maximum slope within the film to be of order Call3, and 
that matching of the solution of (4.7) to the static meniscus is possible.) 

Results of the six subregions of the film are first summarized here. Figure 4 shows 
the corresponding lengthscales. The film is deposited by the apparent contact line 
(region 1) of width Call3. In the downstream distance x - 1, the film thickness at the 
centre is 0(Ca2’3), and it decreases to O(Ca) at the sides (region 2) before merging to 
the corner meniscus (figure 1). This initial film profile is frozen in x 4 Ca-l. When 
x - Ca-l, surface tension rearranges the film at the centre into a parabolic shape 
(region 3) while the film at the sides (region 4) thins to 0(Ca413). For x % Ca-l, the film 
remains parabolic, but the height decreases as film fluid leaks through the sides (region 
5) .  The trailing film of height h, terminates in a strip of width hl/Cali3 (region 6). The 
purpose of Part 1 is to determine h,(x,z). 
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Tangential- 
convection Quasi-stead y 
region (2) constriction (4) 

Termination 

First stage of film 
rearrangement (3) 

Second stage (5) 
CG 

FIGURE 4. Lengthscales of the six film subregions. The static contact lines are depicted by thick lines. 
The top diagram shows the width and length of each region while the lower diagram illustrates the 
corresponding film profile and height. h, is the film height arriving at the back end. The slope of the 
film is small everywhere as indicated by the lengthscales. The film height is exaggerated for illustrative 
purposes. 

5. Film deposition 
The film is deposited by the apparent contact line sketched in figure 4. Dissipation 

of mechanical energy owing to the motion of the bubble is largest in the thin film. The 
pressure drop needed to displace the bubble is therefore determined by the motion 
within the film. For axisymmetric flow without surfactants, much of the film is static, 
and dissipation is confined to the contact region. We show this is true even when the 
flow is not axisymmetric. 

In the limit Cu + 0, the shape of the apparent contact line becomes independent of 
Cu, but the width of the contact region vanishes. This implies that the width of the 
region becomes small compared with the radius of curvature of the apparent contact 
line, and hence that local Cartesian coordinates can be used. In terms of the (n,s) 
coordinates in figure 3, (4.7) becomes 

= 0, 

where the angle $ depends only on s, and is defined by the outer solution. The 
capillary-pressure gradient along the apparent contact line is order ( n / ~ ) ~  compared 
with that normal to it, and is therefore negligible because the width of the contact 
region is small compared with its length. 

The second and third terms in (5.1) represent normal and tangential convection. 
Because a/as - 1 and a/an - n-l, where n < 1, the ratio of normal to tangential 
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convection is cos @)/n sin (4). This ratio is large compared with one, unless cos ($) - n, 
i.e. if ;TC-# - n. Tangential convection is thus negligible in (5.1) except where the 
contact line is almost parallel to the direction of bubble motion. Outside this region, 
mass flow along the contact line is negligible, and (5.1) simplifies to 

where 

a4 - = 0, 
an 

1 a3h 
3Ca an3 

4 = - ~ ' - - ~ c o s $ .  

( 5 . 2 ~ )  

(5.2b) 

The volume flux has two contributions. One is due to the gradient in capillary pressure, 
which sucks fluid from the film. The other is due to the motion of the wall, which drags 
fluid into the film. From (5.2), the difference between the two fluxes must be constant 
along a section normal to the contact line. The difference is the volume flux (height) of 
the trailing film carried away by the wall. Integration of (5.2) gives 

h-h, 
- = 3Cacos($)- 
a3h 
an3 h3 ' (5.3) 

where h,(s) is the thickness of the trailing film to be determined. Equation (5.3) is 
identical to the classical equation of Landau & Levich (1942) and Bretherton (1961) 
when the capillary number is redefined using the velocity component normal to the 
contact line. Thus, only a summary of the solution of (5.3) is presented here. Details 
are given in Appendix B. As n+ co, h+ 00, and (5.3) requires a3h/an3 - to  or 

a2h k 
- + ~ ( ~ C U C O S ~ ) ~ / ~ ,  
an2 h, (5.4) 

where k ,  = 0.64304 is determined by solving (5.3) numerically (Appendix B). This 
result is used to find h,(s). 

The film thickness, h,, is obtained by matching the normal curvatures in (3.3) and 

(5 .5)  

(5.4): 
k 

ho = 2(3Cac0s$)~ '~.  
a 

$(s) is a known function of s (or z),  because the contact line is known from (3.2). 
Hence, for all capillaries described in table 1, 

k 
h,(z) = 2 ( 3 C ~ ) ' ~ ~  

a 

where a, b, and c depend on capillary shape. This film profile is plotted in figure 5 (solid 
line) for the square capillary. The scaled area 

is used to normalized h,(z). Table 1 lists the values of A ,  for various capillaries. The 
initial film profile h,(z) is maintained in the downstream distance x < Ca-'. 

Equation (5.6) gives h,(z = b) = 0. This means that the film thickness at the sides of 
the film is zero to the order of Ca213 or h = o ( C ~ ~ / ~ ) .  At the sides, cos$+O, so the 
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1.6 . - - -  , 

Initially deposited film 

Steady, parabolic film 

" 
-1 .o -0.5 0 0.5 1 .o 

Z 

FIGURE 5. Film profiles in a square capillary. H and Z are normalized film height and cross- 
stream distance defined in (6.6). The area under the two curves is the same. 

tangential-convection term in (5. l), which was neglected in the deposition region, 
becomes important. The effect of this term is studied in the next subsection. 

5.1. Tangential-convection region 
The tangential-convection region is located at  the sides of the film, as depicted in 

figure 4. In this region, the normal component of convection, which drags fluid into the 
film, approaches zero, whereas the normal capillary suction, which sucks fluid away 
from the film, remains the same as that in the front. Thus, the film becomes much 
thinner than that at the front. Even though the film is thin, lateral fluid leakage caused 
by the capillary suction may be significant. The purpose of this section is to determine 
the amount of fluid sucked away from the film throughout the tangential-convection 
region, and to establish whether that leakage has any significant effect on the deposited 
film. 

The film thickness in this region is governed by (5.1), i.e. 

= 0. 

Here, C O S ~  4 1, so normal convection has decreased to become comparable with 
tangential convection. Since we are interested in the leakage and not in the actual film 
profile, a scaling analysis is sufficient. 

Lengthscales of the tangential-convection region are determined from the matching 
condition, the governing equation (5.1), and the geometry of the contact line. The 
matching condition in (3.3) states that 

a2h 
@- 1. 

Balancing dominant terms in (5.1) yields the following two equations: 

a3h 
an 

h3 - Ca h cos q5, (5.9) 

and 
ah ah 
-cos$ - -. 
an as 

(5.10) 
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The contact-line equation (3.2) shows that cos $ - exp (- c(x-XJ) as cos $ + 0. 
Differentiation with respect to s gives 

a 
-cos$ - cos$. 
as 

Lengthscales follow from (5.8)-(5.11): 

s -  1, 

n - Ca112, 

h - CU, 

cos$ - Cali2 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

As expected, the film thickness is an order smaller than that in the front contact region, 
where h - Ca2I3. 

These lengthscales differ from those obtained by Burgess & Foster (1990 equation 
( 5 5 ) )  for a circular flat bubble in Hele-Shaw cells. In their problem, the geometry of the 
circular contact line yields ~ ( C O S  $)/as - 1 at the tangential-convection region. This 
result together with (5.8)-(5.10) gives s - Call5, n - CU’/~, h - Ca4I5. In our case, 
a(cos $)/as - cos $, so (5.12)-(5.14) are obtained instead. 

The lengthscales of the tangential-convection region provide an estimate for the 
leakage rate through this region. Let n be a unit vector normal to the film boundary. 
From (4.6) the volume flow normal to the film boundary per unit boundary length is 

1 a3h 
q = q - n  = -h3--hcos$, 

3Ca an3 
(5.16) 

or q - Ca3I2. (5.17) 

Since s - 1 in the tangential-convection region, the total leakage is proportional to 
qs - CU”~,  which is negligible compared with the volume of film fluid ( - Ca2I3). Thus, 
the deposited film is trapped, and it subsequently rearranges to minimize surface area. 
This rearrangement process is studied in the next section. 

6. Film rearrangement 
The deposited liquid film rearranges in two stages. In the first stage, surface tension 

drives the film into a parabolic shape in x - Ca-’. This process is studied here. In the 
second stage, which occurs in x 9 Ca-l, the parabolic profile is maintained, but the film 
fluid leaks away through the film boundary. This leakage controlled rearrangement is 
studied in $7. 

Film rearrangement is governed by (4.7): 

(6.1 a) 

When the lengthscales h - CaZi3 and z - 1 from h,(z) are substituted into (6.1 a), we 
find x - Ca-l. Thus, the first-stage film rearrangement happens in a long downstream 
distance compared with the width of the film. Therefore, the capillary-pressure 
gradient in the streamwise direction is negligible compared with that in the cross- 
stream direction, and is excluded in (6.1 a). 
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Boundary conditions of (6.1 a)  include the symmetry conditions at the centre of the 
film : 

(6.1 b, c) 
ah a3h 
-(x,z = 0) = 0, -(x,z = 0) = 0. aZ a23 

Section 5.1 shows that the film thickness is O ( C ~ ~ / ~ )  at the sides of the film at z = b, and 
matching gives 

h(x,z = b) = 0. (6.1 d )  

The fourth condition is that the film area is conserved, 

A l h d z  ax = 0. 

The integral condition is derived as follows. Integration of (6.1 a)  yields 

A[hdz+&[h3$] = 0. 
ax z=b 

(6.1 e )  

The rate of change of the film area (first term) is therefore controlled by the rate of 
leakage through the film boundary (second term). An order of magnitude estimate is 
sufficient to show that the film area is conserved for x - Ca-'. The first term is O(Ca5I3) 
as determined by the lengthscales h - CaZi3, x - Ca-', and z - 1. The second term 
requires lengthscales at the side constriction, which are determined from the following 
matching conditions. On one side of the constriction, the slope of the central film 
specifies 

h - ca2/3. aZ 
On the other side, the curvature of the fluid meniscus requires (see 93), 

a2h 
p- 1. 

These two conditions give 
h - Ca4I3, z - Caala. 

Thus, the leakage rate in (6.2) is O(Ca7I3), which is negligible compared with the first 
term (- Ca5I3). The film area is therefore conserved in x - Ca-l. 

The first stage of film rearrangement is governed by (6.1). A new set of variables is 
defined as follows: 

xA :( 3 Ca) Z 
, z = -  

b7 b' 
X =  hb 

A,(3Ca)213 ' 
H =  

Substitution of these variables into (6.1) removes all parameters: 

aH a a3H -+- H3- = O ,  ax az( az3) 

i3H a3H 
-(X,Z = 0) = 0, -(X,Z = 0) = 0, 2 2  az 

H(X,Z = 1) = 0, H d Z  = 1. s: 

(6.7a) 

(6.7 b, c) 

(6.7d, e) 
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FIGURE 6. The difference between the film height, H ,  and the steady film height, H ,  in a square 
capillary as functions of cross-stream distance Z and downstream distance X. 

The initial film profile in (5.6) becomes 

The constants b, c, a, and A ,  depend on capillary shape (table 1). 
Surface-tension forces rearrange the film. Far downstream as X - 2  00, the film height 

becomes steady and is therefore independent of X .  Equations (6.7a-e) can then be 
solved analytically. The steady-state solution is 

- 
H = i(1-Z'). (6.8) 

This parabolic profile is compared with the initial profile in figure 5.  Within the small- 
slope approximation, a parabolic shape minimizes surface area for a given volume. 

Rearrangement of fluid films from the initial to the parabolic profile is determined 
numerically. The integral condition (6.7e) slows the calculation and is avoided by 
transforming the dependent variable from the thickness of the film, H ,  to the area of 
the film, 

(6.9) 

The transformed equation is solved by a backward implicit finite-difference method, 
which is first order in X and second order in 2. Since the equation is nonlinear, the area 
at each step in Xis calculated iteratively by Newton's method. The numerical solution 
is checked under spatial and temporal refinement. Solutions presented below are 
computed using 1000 uniformly spaced grid points in Z and a step size of in X .  

Figure 6 plots the difference between the calculated film height H ( X , Z )  and the 
steady profile R(Z) as functions of Xand Z. Specifically, the difference along the central 
plane Z = 0 is shown in figure 7(a) .  The insert shows that the difference increases first 
before it decays exponentially. To understand this peculiar behaviour, the steady 
profile is perturbed by an infinitesimal disturbance. Decomposition of the disturbance 
into normal modes generates a complete set of eigenfunctions (Appendix C). The initial 
profile is then expanded as a series of the eigenfunctions. The coefficient of the second 
eigenmode is found to be of opposite sign from that of the fundamental mode. Since 
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FIGURE 7. (a) -, the difference between the steady film height, R(Z = O), and the computed film 
height, H ( X ,  2 = O), as a function of the downstream distance X .  The insert expands the behaviour 
near X = 0. ---, the decay of the fundamental eigenmode of an infinitesimal disturbance to the 
steady profile (Appendix C). (b)  Film profiles at X = 0.01. The steady parabolic profile is subtracted 
from the numerical solution. The amplitude of the fundamental eigenfunction is found by matching 
the film height at Z = 0. 

the second mode decays faster, the initial behaviour of the film is opposite to the late- 
time behaviour. The decay rate and film profile of the fundamental mode are compared 
with the numerical solution in figures 7(a )  and 7(b).  The agreement between the 
analytic and numerical solutions confirms that both solutions are correct. 

In this section, we have obtained a numerical solution for the normalized film height 
H(X,  Z ) .  Thus, for X + 1 to x - Ca-', 

(6.10) 

This solution is sufficient for determination of energy dissipation at the back end if the 
length of the bubble is O(Ca-l) or less. For longer bubbles, further film rearrangement 
needs to be considered. 
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7. Second stage: thinning of the parabolic film 
In the first stage (x - Cap'), film area is conserved while surface tension rearranges 

the film into a parabolic shape. In the second stage, leakage through the film sides 
becomes important, causing the film to drain. In this stage, the film remains parabolic, 
so only the film area needs to be determined. The solution is found to hold for all 
x % Ca-l. 

Film area A obeys (6.2): 

where A = hdz.  1 
(7.1 a )  

(7.1 b) 

The second term in (7.1 a) is the rate of leakage of film fluid through the side ( z  = b). 
The following analysis of the side constriction (shown as region 4 in figure 4)  gives the 
leakage rate in terms of A.  Equation (7.1 a) can then be solved. 

Flow in the side constriction satisfies (6.1 a). Comparison of streamwise lengthscales 
in (6.1 a) and (7.1 a )  shows that the flow in the constriction is quasi-steady. (This will 
be verified following (7.4).) Thus, (6.1 a) simplifies to 

(7.2a) 

where q is the leakage rate to be determined. 

constriction. Matching to the slope of the parabolic film requires 
Boundary conditions of (7.2a) are the matching conditions on either side of the 

ah 3A -+-b2 as z-b-t-oo. aZ 
Matching to the curvature of the corner meniscus ( 9 3 )  demands 

-+a asz-b+oo. 
a2h 
az2  

Lengthscales at the constriction are found from these two conditions as 

h - '("1, z - 1 3A 
a b2 

Substitution of these scales into ( 7 . 2 ~ )  gives the leakage rate 

(7.2b) 

( 7 . 2 ~ )  

(7.3) 

(7.4) 

This equation shows how the leakage rate depends on film area. The proportionality 
constant C, = 1.2098 is determined by solving (7.2) numerically (Appendix D). Figure 
8 shows the normalized constriction profile. An analogous leakage problem occurs in 
drainage of axisymmetric films (Frankel & Mysels 1962; Jones & Wilson 1978). 

The quasi-steady assumption can now be verified. Given the lengthscales in (7.3), 
(6.1 a) shows that the constriction evolves downstream with lengthscale x, - Ca/A2. 
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FIGURE 8. Film profile at the side constriction in x % Ca-'. M = / ~ ( 3 A / 2 b ~ ) ~ / 3 q C a  and 
7 = (z-b)(3A/2b2)4/3qCa as defined in Appendix D. 

But boundary condition (7.2b) for the flow in the constriction depends on A ,  which 
varies with x as the film drains. The lengthscale ( xd )  for the drainage is found 
from (7.1 a), which requires xd N Ca/A4. Thus, xd 9 x, because the maximum 
A - Ca2I3 < 1. Therefore, during film drainage the flow in the constriction is quasi- 
steady. 

Substitution of (7.4) into (7.1) gives 

dA 35cl A5 = 0. -+ dx olbl'(3Ca) 

The initial film area in (5.7) provides an initial condition, 

A(x = 0) = ~f , (3Ca) ' /~  
Thus, 

where 

A,( 3 Ca)213 
[ l  +p(3Ca)5'3x]1/4' 

A(x)  = 

4(35) C, A: 
ab" 

p =  

(7.5a) 

(7.5b) 

(7.6a) 

(7.6b) 

is a parameter independent of Ca and x .  The film profile in x 9 Ca-' follows directly, 

3A0( 3 Ca)'I3 
2b[l +P(3Ca)513x]'14 

h(x,z)  = (7.7) 

Thus,when x - CaP5l3, h - Ca2I3. I f x  9 Ca-513, then h N Ca114x-1/4 < Ca2I3. Thus, the 
second stage of film rearrangement lasts indefinitely. 

8. Termination of the thin film 
The film terminates in the apparent contact line at the back of the bubble (i.e. region 

6 in figure 4). Dissipation of mechanical energy in the termination and deposition 
regions determines the pressure drop needed to move the bubble. This section describes 
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FIGURE 9. Numerical solution of b, vs. b,. 

the fluid motion in the back contact region. The result is used in Part 2 to find the 
pressure drop. 

Film thickness in this region is governed by (5.2), with the normal component of 
velocity (-cos$ in (5.2)) replaced by cos(x-$). ($ is defined in figure 3.) Thus, 

1 a3h 
3Ca an 

- _  as - 0, where q = - - h 3 3 + h ~ ~ ~ ( n - $ ) .  
an 

(8.1 a,  b) 

Let h,(x, 1) be the incoming film thickness, given by (6.10) or (7.7) depending on bubble 
length. Then q(s) is determined by the matching condition h + h, as n -+ - 00. Thus, the 
thickness of the trailing film in the back contact region satisfies 

(h ,  - h) - _  - 3Cacos(n-q5)--- a3h 
an3 h3 

The boundary conditions are that h + h, as n + - co and h --f co as n --f co. 
Appendix B shows that the solution of (8.2) can be expressed in terms of that given 

by Bretherton (1961) for the trailing film in the axisymmetric flow. Here we discuss 
only the single property of the solution needed for determination of the drag of 
the bubble. The drag is the shear force exerted by the wall on the fluid films 
surrounding the bubble. Part 2 (equation (3.13)) gives the drag as the integral of 
[h C?%/an2 - (3h/C?n)2/2],,, over the cross-stream width of the film. Appendix B 
shows that as n+cO 

a is the mean curvature of the static meniscus. b, is a function of 
b, =_ ah1(3Ca)-2'3cos-2/3(~ -$). This function is obtained from a numerical solution of 
(8.3) (Appendix B) and is plotted in figure 9. 

Figure 10 plots the product h,(x,z)b,(x,z) as a function of z for two different 
capillaries (a square and a rectangle) and for x ~2 Ca-', x = Ca-l and x = Ca+I3. The 
graph shows that the drag is of order Ca2I3 for the bubble lengths considered. Another 
observation is that the curves approach zero at z = b, the location where tangential 
convection is important. This means that the tangential-convection region has 
negligible contribution to the drag. Thus, we omit discussion of that region here. 
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FIGURE 10. h, b, us. z at various downstream distances x for (a) a square capillary with N = 4 and 
(b)  the longer side of a rectangular capillary with aspect ratio B = 2. 

9. Concluding remarks 
This work studies the motion of long bubbles in polygonal capillaries in the limit 

Ca + 0 to elucidate the effects of pore corners on the flow of foam bubbles in porous 
media. The polygonal capillaries capture the important non-axisymmetric charac- 
teristic of the pores. At the same time, they are regular enough to allow a precise 
calculation of the drag, pressure drop, and fluid and bubble velocities. 

This first part studies the structure of the fluid films deposited by the bubble. We find 
that a deposited film is non-uniform in the cross-stream direction and rearranges 
downstream. Six film subregions have been identified, each characterized by unique 
lengthscales. The subregions not only reveal the physics of film deposition, 
rearrangement, and termination, but also allow the film profile to be expressed as a 
general function of the downstream distance. The film profile is used in Part 2 to 
calculate the drag of the bubble. 

In a polygonal capillary, the pressure work is dissipated by fluid motion in the thin 
films and in the bulk. The dissipation in the films is strongest at the deposition and 
termination regions. This dissipation is found from the lengthscales in 995 and 8 as 
O(Cazi3). In a circular capillary, the liquid and the bubble move at roughly the same 
speed, so the dissipation in the bulk is always an order less than that in the film. In a 
polygonal capillary, the liquid can bypass the bubble through the leaky corners at a 
velocity - C U - ~ / ~ L - ' ,  where L is the length of the bubble (Part 2). In this case, the 
dissipation in the bulk is O(Cali3 L-'), which is greater than the dissipation in the films 
if L < Ca-li3. Under this condition, the liquid flow exhibits a new rheological response. 
This discovery reconciles two groups of contradictory foam flow experiments, as 
discussed in Part 2. 
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Appendix A. Explicit solutions for the mean curvature a 
Because the capillary has uniform cross-section, a can be found by the following 

method. Consider the projection of the static meniscus onto a plane of constant x, as 
in figure 2. Let the area of this domain be d and its perimeter 9. Integration of (3.1 a) 
over this domain, followed by use of the divergence theorem shows that 

9 = a d .  (A 1) 

Both 2 and d can be calculated explicitly because the boundary of the projection 
consists of straight lines and circular arcs of radius a-'. This method has been applied 
to menisci in non-axisymmetric capillaries with zero contact angle (Mason & Morrow 
1984; Wong, Morris & Radke 1992a) and with finite contact angles (Wong et al. 
1992b). 

Given a, b is determined from the geometry of the meniscus, as shown in figure 2. 
For a regular polygon with N sides, 

b = (1 - u-l) tan ( n / N ) ,  (A 2) 

where 

For a rectangular capillary, b and a are related differently. There are two values of 
b for a rectangle with aspect ratio B: 

b = B-a-' (A 4) 

on the longer side with length 2B and 

b = 1-a-l 
on the side with length 2. Here, 

B +  1 +((B- l)'+nB)'/' 
2B 

a =  

Values of b and a are listed in table 1.  

Appendix B. Asymptotic solutions for the deposition and termination 
regions 

substitution 
At the deposition region, the governing equation (5.3) is simplified by the 

d3G - G-1 
dy3 G3 ' 



90 

The boundary conditions are the asymptotic conditions : 
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G + 1  asy-f-co, (B 2b) 

and G+co asy+co.  (B 2 4  

As y --f co, ( B  2) requires d3G/dy3 + 0 or G + ik , (y  - yo)’ + k,.  k ,  = 0.643 04 and k ,  = 
2.8996 are obtained from a numerical solution of (B 2). yo merely defines the original 
of y and has no physical significance. Hence, as n+ co, 

and 

a2h k 
- + ~ ( ~ C ~ C O S $ ) ~ / ~ ,  
an2 h, 

h---(-) ah + k ,  k2(3Cu cos 4)’j3. 
an2 2 an 

(B 3) is used in $ 5  to find ha. (B 4) is used in Part 2, $3 for calculation of drag at the 
front of the bubble. 

A numerical method has been developed for the back deposition region as described 
later in this Appendix. The method also applies here after minor modifications. 
Equation (B 2) has been solved previously by Landau & Levich (1942), Mysels, 
Shinoda & Frankel (1959), Bretherton (1961), Reinelt & Kraynik (1990), and Burgess 
& Foster (1990). However, their main focus has been the film thickness and not the 
drag. To calculate the drag for the back end, we find it necessary to develop our own 
scheme. 

At the back termination region, the governing equation (8.3) is normalized by the 
substitution 

h 
G = -  7 

hl’ 

d3G 1-G - - ~~ 

dy3 G3 
The boundary conditions are 

G + 1  asy+-co, (B 6b) 

and G+oo asy+co.  (B 6 4  

Hence, as y + co, d3G/dy3 + 0 or G +ibl(y - T ~ ) ~  + b,. Matching to the curvature of the 
outer solution in (3.3) gives 

Once b, is known, b, is determined uniquely (see below). Thus, as n+oo, 

This expression is needed for calculation of drag at the back end of the bubble. Given 
a point ( x , z )  on the back contact region, h,(x,z) is known from (6.10) or (7.7), and 
cos(7c-$) (in d $ d 7c) from (3.2). Thus, b, and therefore (B 8) can be evaluated at 
each point along the back contact region. 

The function b, = b2(b,) is determined by solving (B 6) numerically. Asymptotic 
expansions of G in y +- GO are used to initiate the integration. The solution is marched 
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to 7 + co by the fourth-order Runge-Kutta method. Accurate values of b, and b, are 
obtained by exponentially contracting the independent variable and by using higher- 
order asymptotic expansions at both ends. The expansions at the negative end contain 
a free parameter that controls the phase angle of the exponentially growing terms 
(Wong 1992, p. 162). Variation of this parameter changes the values of b, and b,, and 
generates the function b, = b,(b,) plotted in figure 9. 

Within x < Ca-', the film does not rearrange, i.e. h,(x,z)  = ho(z). Therefore, 
b, = k ,  = 0.64304 and b, = -0.84529. With film rearrangement, b, can take on any 
positive value. 

Appendix C. Perturbation of the steady film area 
We perturb the film area instead of the film thickness because the resulting 

eigenvalue problem contains a self-adjoint operator, which is very useful in proving the 
completeness of the eigenfunctions. Let S(X, Y )  be the disturbance to the steady film 
area. Thus, 

A(X, Z )  = H(Q d5+ S(X, Z), (C 1 )  SI 
where H is the steady, parabolic film profile given in (6.8). Substitution of A into its 
governing equation gives, to the leading order, 

as - a4s 

ax a 2 4  . 
-+H3-  = 0 

Separation of variables yields 

s(x, z) = e - 2 7 ~ ~ / 8 ~ ( ~ ) ,  
where g(Z) satisfies 

( 1  -z2)31 d4g = hg. 
dZ  

The boundary conditions in ( 6 . 7 k e )  become 

d2g -(Z = 0) = 0, g(Z = 0) = 0, dZ  

dg -(Z = 1) = 0, g(Z = 1 )  = 0. 
dZ 

h is the eigenvalue to be determined together with g. 

series about the ordinary point 2 = 0, 
The eigenvalue problem is solved by expanding the eigenfunction g(2)  in a Taylor 

a, 

g = C aiZi .  
i=O 

Substitution of this series into (C 4a) and equating the coefficient of each power of 2 
to zero give 

for i = 0, 1,2, ..., and a, = 0, i !  = co if i < 0. (C 6) 
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The convention defined in the last line compacts the representation of the coefficients. 
The above equation shows that a,, a,, a2 and a3 are arbitrary constants. Also, the even 
and odd terms are decoupled. Thus, we obtain four independent solutions of g: two 
even and two odd functions of Z. The boundary conditions (C4b) and (C4c) eliminate 
the two even solutions. The remaining two solutions are normalized as 

and 

m 

G,(Z; A )  = C a,(A) Zi with a,  = 1 ,  a3 = 0,  (C 7 4  
i= l  

i o d d  

Ix: 

G,(Z;A) = C ai (A)Zi  with a,  = 0, a3 = 1 .  (C 7b) 
i=3 

i odd 

Thus, any eigenfunction g must be a linear combination of these two solutions: 

g = a,G,+a,G,, (C 8) 

(C 9 4  

where a,  and a3 are two arbitrary constants. The boundary conditions at  Z = 1 demand 

g ( Z =  1 )  = a,G,( l ;A)+a,G,( l ;A)  = 0 

and 
dg dG1 dG 
- (Z= 1 )  = a l - ( l ; A ) + a 3 L ( 1 ; A )  = 0. 
d Z  d Z  d Z  

For a non-trivial solution of g, a, and a3 must not be zero simultaneously. Therefore, 

dG dG 
d Z  d Z  G,(1 ; A) ‘ ( 1  ; A) - G3( 1 ; A)! ( 1  ; A) = 0, 

which determines all the eigenvalues Aj ( j  = 1,2,3, . . .) (Wong 1992, p. 165). Specifically, 
A, = 65.526 and A, = 307.22. Hence, the slowest decay rate is given by (C 3 )  as ?Al, 
which is plotted as a dashed line in figure 7 ( a ) .  The eigenfunction of the fundamental 
mode is then obtained from (C 8). This is the eigenfunction for the film area. The 
corresponding film height is obtained by differentiation and is compared with the 
numerical solution in figure 7(b). The completeness of the eigenfunctions is proved 
following the standard procedures for eigenvalue problems with self-adjoint operators 
(Courant & Hilbert 1953). 

Appendix D. Numerical solution for the constriction profile 
The film profile is governed by (7.2), which is simplified by the substitution 

M = -(?!!y h 
= m(?!!y 3Caq 2b2 ’ 3Caq 2b2 ’ 

= 1 ,  
d3M 

M3- 
dr3 

d M  
- + - 1  a s r + - a .  
d r  

d2M 
dr2 
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As 7 + co, M+ co, and (D 2a) requires d3M/d~3  + 0 or d2 M/dT2 + C,. The curvature 
C, is found by solving (D 2). The film height is marched from large negative 7 to large 
positive 7 by the fourth-order Runge-Kutta method. Asymptotic expansions in 
7 -+ - co are used to start the integration accurately. By using an initial film height of 
10, 100, or 1000, and by varying the step size from 0.02 to 0.002, the solution is found 
to be accurate to lo-’. We find the curvature C, = 1.2098 (and the minimum height of 
M = 1.2593). The leakage rate q then follows from (D 2c) by equating the curvatures. 
This leakage problem was solved previously by Frankel & Mysels (1962) and Jones & 
Wilson (1978). However, their solutions for C, are accurate to only two significant 
figures. 
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